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An error correction encoding device 1 includes a sparse
matrix computing unit 2 that computes exclusive OR of a
submatrix, in a parity-check matrix, corresponding to an
information bit sequence, and the information bit sequence
on the basis of the position of 1 in the submatrix to calculate
a vector, a fundamental matrix operator 3 that calculates a
predetermined matrix by performing a predetermined fun-
damental matrix operation on a submatrix, in the parity-
check matrix, corresponding to a parity bit sequence, and a
matrix multiplier 4 that calculates the parity bit sequence by
multiplying the predetermined matrix which the fundamen-
tal matrix operator 3 calculates, and the vector which the
sparse matrix computing unit 2 calculates.
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ERROR CORRECTION ENCODING
METHOD AND ERROR CORRECTION
ENCODING DEVICE

FIELD OF THE INVENTION

The present invention relates to an error correction encod-
ing method and an error correction encoding device that
perform encoding according to Low-Density Parity-Check
codes (referred to as LDPC codes from here on).

BACKGROUND OF THE INVENTION

Error correcting codes are a technique of correcting an
error bit which is caused by noise occurring in a commu-
nication channel in a communication system. In a commu-
nication system using this technique, instead of transmitting
information data from a transmitter, just as they are, a
process, which is referred to as encoding, is performed on an
information bit sequence d (equation 1) to be transmitted to
calculate a parity bit sequence p (equation 2), and a code-
word ¢ (equation 3) which is a sequence which is a combi-
nation of the information bit sequence d and the parity bit
sequence p is transmitted.

d=(d,ds, . . ., dy) (D

p=O1p2 - - - D) ()]

=(d,d, . ©)

Although the transmission bit rate drops by a value
corresponding to the parity bit sequence p, a receiver can
correct or detect an error existing in the received data by
performing a process, which is referred to as decoding, by
using both the information bit sequence d and the parity bit
sequence p.

An LDPC code is an error correcting code defined by a
sparse parity-check matrix with few non-zero elements, as
shown in FIG. 13. It is assumed hereafter that matrix
elements include only O and 1. The number of columns of
the parity-check matrix corresponds to the number n of bits
(code length) of the codeword c, and, in many cases, the
number of rows is the number m of parity bits. The number
k of bits of the information bit sequence d is k=n-m.

As a conventional technique of encoding an LDPC code,
a method of using a lower triangular matrix is disclosed in
nonpatent reference 1. According to this method of using a
lower triangular matrix, a fundamental matrix operation,
which will be mentioned below, is performed on a parity-
check matrix first, and elements in the upper right of a
submatrix with m rows and m columns (referred to as an
mxm submatrix from here on) on a right-hand side of the
matrix are set to 0 to acquire a lower triangular matrix as
shown in FIG. 14. Then, by using this lower triangular
matrix, parity bits are calculated by backward substitution,
and encoding is performed.

In this case, the fundamental matrix operation includes:
(1) interchanging two rows; (2) interchanging two columns;
and (3) adding a row j to a row i (i=]) by using modulo 2 (i.e.,
calculating exclusive OR).

In the case of the conventional method of using a lower
triangular matrix, by performing the fundamental matrix
operation on the parity-check matrix, non-zero elements of
the matrix increase, and, as a result, even if the parity-check
matrix is sparse, the lower triangular matrix is no longer a
sparse matrix. Therefore, in the conventional method of
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using a lower triangular matrix, the amount of computations
increases with increase in non-zero elements.

On the other hand, an encoding method which has been
known since long ago separately from the method of using
a lower triangular matrix is also disclosed is nonpatent
reference 1. According to this encoding method, a funda-
mental matrix operation is further performed on the above-
mentioned lower triangular matrix to make a right-hand side
of the matrix be a unit matrix, as shown in FIG. 15. When
an mxk submatrix on a left-hand side of this matrix is
expressed by Q2, by multiplying the information bit
sequence d by the matrix Q2 from the left, the parity bit
sequence p can be determined. The matrix Q2 (or a trans-
posed matrix of the matrix Q2) at this time is referred to as
a generator matrix.

However, the number of is included in the generator
matrix Q2 shown in FIG. 15 is equal to or larger than that
in a matrix Q1 shown in FIG. 14 in many cases. Therefore,
a problem is that the number of times of exclusive OR is
large and the amount of computations is large, like in the
case of the above-mentioned conventional method of using
a lower triangular matrix.

RELATED ART DOCUMENT
Nonpatent Reference

Nonpatent reference 1: “Low-density parity-check code and
decoding method therefor” written by Tadashi
WADAYAMA, and issued by Triceps on Jun. 5, 2002.

SUMMARY OF THE INVENTION
Problems to be Solved by the Invention

A problem with the conventional encoding method of
encoding an LDPC code is that the amount of computations
is large because encoding is performed by using a matrix
with a large number of non-zero elements. A further problem
is that the circuit scale at the time that the encoding method
is implemented as a circuit increases because the amount of
computations is large.

The present invention is made in order to solve the
above-mentioned problems, and it is therefore an object of
the present invention to provide a reduction in the amount of
computations in the encoding of an LDPC code, and a
reduction in the circuit scale at the time that the encoding is
implemented as a circuit.

Means for Solving the Problem

In accordance with the present invention, there is pro-
vided an error correction encoding method including: a
sparse matrix computing step of computing exclusive OR of
submatrices, in a parity-check matrix, corresponding to an
information bit sequence, and the information bit sequence
on the basis of the position of 1 in each of the submatrices
to calculate a plurality of vectors; a vector element summing
step of acquiring a vector which is the sum of the plurality
of vectors acquired in the sparse matrix computing step; a
first matrix multiplying step of multiplying an inverse matrix
of a matrix which is acquired by summing up a part of
submatrices, in the parity-check matrix, corresponding to a
parity bit sequence and the sum vector acquired in the vector
element summing step to calculate a part of the parity bit
sequence; a second matrix multiplying step of multiplying
the part of the submatrices which is the target for the
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summation in the first matrix multiplying step and the part
of the parity bit sequence acquired in the first matrix
multiplying step to acquire a vector which is a multiplication
result; and a parity bit calculating step of calculating a
remaining part of the parity bit sequence on the basis of the
plurality of vectors acquired in the sparse matrix computing
step and the vector which is the multiplication result
acquired in the second matrix multiplying step.

In accordance with the present invention, there is pro-
vided an error correction encoding method in which an
information bit sequence d,, is a vector consisting of q
elements corresponding an i-th block (1=i<K) when ele-
ments thereof are divided into blocks each having q ele-
ments, a parity bit sequence p, , is a vector consisting of q
elements corresponding an i-th block (1=i=M) when ele-
ments thereof are divided into blocks each having q ele-
ments, a parity-check matrix with M rows and N columns
consists of submatrices X,; with M rows and K columns
(K=N-M) corresponding to the information bit sequence,
submatrices Z; in a first column of M rows and M columns
corresponding to the parity bit sequence, and submatrices
including unit matrices as diagonal elements of two rows,
and each element of the parity bit sequence is calculated
according to equations (24), (26), and (27) which will be
mentioned below.

In accordance with the present invention, there is pro-
vided an error correction encoding device including: a
sparse matrix computing unit that computes exclusive OR of
submatrices, in a parity-check matrix, corresponding to an
information bit sequence, and the information bit sequence
on the basis of the position of 1 in each of the submatrices
to calculate a plurality of vectors; a vector element summer
that acquires a vector which is the sum of the plurality of
vectors acquired by the sparse matrix computing unit; a first
matrix multiplier that multiplies an inverse matrix of a
matrix which is acquired by summing up a part of subma-
trices, in the parity-check matrix, corresponding to a parity
bit sequence and the sum vector acquired by the vector
element summer to calculate a part of the parity bit
sequence; a second matrix multiplier that multiplies the part
of the submatrices which is the target for the summation by
the first matrix multiplier and the part of the parity bit
sequence acquired by the first matrix multiplier to acquire a
vector which is a multiplication result; and a parity bit
calculator that calculates a remaining part of the parity bit
sequence on the basis of the plurality of vectors acquired by
the sparse matrix computing unit and the vector which is the
multiplication result acquired by the second matrix multi-
plier.

Advantages of the Invention

Because the error correction encoding method according
to the present invention performs the multiplication of the
parity-check matrix and the information bit sequence while
dividing the multiplication into plural steps, the size of the
matrix which is multiplied by the vector in the matrix
multiplying step and is not sparse can be reduced to less than
that in the conventional method and many of the computa-
tions can be performed by using sparse matrices. Therefore,
the amount of computations for the encoding of a QC
(Quasi-Cyclic)-LDPC code can be reduced.

Because the error correction encoding method according
to the present invention uses the equations (24), (26), and
(27), which will be mentioned below, many of the compu-
tations can be performed by using sparse matrices, and
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4

hence the amount of computations for the encoding of a
QC-LDPC code can be reduced.

Because the error correction encoding method according
to the present invention performs the multiplication of the
parity-check matrix and the information bit sequence while
dividing the multiplication into plural steps, the size of the
matrix which is multiplied by the vector in the matrix
multiplying step and is not sparse can be reduced to less than
that in the conventional method and many of the computa-
tions can be performed by using sparse matrices. Therefore,
the circuit scale of the error correction encoding device for
QC-LDPC codes can be reduced.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a block diagram showing the structure of an error
correction encoding device in accordance with Embodiment
1 of the present invention;

FIG. 2 is a view explaining the structure of a parity-check
matrix for use in the error correction encoding device in
accordance with Embodiment 1;

FIG. 3 is a flow chart showing the operation of the error
correction encoding device in accordance with Embodiment
1;

FIG. 4 is a block diagram showing the structure of an error
correction encoding device in accordance with Embodiment
2 of the present invention;

FIG. 5 is a flow chart showing the operation of the error
correction encoding device in accordance with Embodiment
2;

FIG. 6 is a view showing an example of a QC-LDPC code
used in Embodiment 3 of the present invention;

FIG. 7 is a block diagram showing the structure of an error
correction encoding device in accordance with Embodiment
3;

FIG. 8 is a flow chart showing the operation of the error
correction encoding device in accordance with Embodiment
3;

FIG. 9 is a block diagram showing the structure of an error
correction encoding device in accordance with Embodiment
4 of the present invention;

FIG. 10 is a view explaining a fundamental matrix opera-
tion on a parity-check matrix shown in FIG. 6;

FIG. 11 is a view showing an example of a QC-LDPC
code used in Embodiment 4;

FIG. 12 is a view showing another example of the
QC-LDPC code used in Embodiment 4;

FIG. 13 is a view explaining the structure of a parity-
check matrix for LDPC codes;

FIG. 14 is a view explaining an example of the structure
of a parity-check matrix for use in a conventional encoding
method; and

FIG. 15 is a view explaining another example of the
structure of the parity-check matrix for use in the conven-
tional encoding method.

EMBODIMENTS OF THE INVENTION

Hereafter, in order to explain this invention in greater
detail, the preferred embodiments of the present invention
will be described with reference to the accompanying draw-
ings.

Embodiment 1

An error correction encoding device 1 shown in FIG. 1 is
provided with a sparse matrix computing unit 2, a funda-
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mental matrix operator 3, and a matrix multiplier 4. As
encoding of an LDPC code, the error correction encoding
device receives an information bit sequence d as its input,
and calculates a parity bit sequence p which satisfies a
condition based on a parity-check matrix H.

There is a relationship, as shown in equation (4), between
the parity-check matrix H for LDPC codes and a codeword
c.

He™=(0, ... 0)F @

Hereatfter, it is assumed that an addition of elements (bits)
which is performed in a multiplication of the matrix H and
the vector ¢ is an addition using modulo 2 (which is the same
as exclusive OR). Further, T shows a transposition.

The parity-check matrix H is expressed as shown in
equation (5) and FIG. 2. This parity-check matrix H includes
an mxk matrix X corresponding to the information bit
sequence d, and an mxm matrix Y corresponding to the
parity bit sequence p, and the mxm matrix Y is a regular
matrix. Then, the left side of the equation (4) can be
deformed as shown in equation (6). From this equation (6)
and the equation (4), the parity bit sequence p can be
determined as shown in equation (7).

H=[XY] (5)
HCT = [XY)(d1, day oo s dis P1L P2s e s P) ©
=Xd" +Yp"
xd" +vp" =0 @]
Ypl = -xd"
pT=y'xd"

On the basis of the above explanation, this Embodiment
1 will be explained. FIG. 3 is a flow chart showing the
operation of the error correction encoding device 1 in
accordance with this Embodiment 1.

In step ST11, the sparse matrix computing unit 2 com-
putes exclusive OR of the information bit sequence d and the
mxk matrix X in the parity-check matrix H to acquire a
vector Xd” according to the above equation (6). In this case,
because the mxk matrix X is a submatrix of the parity-check
matrix H, the matrix X is sparse and the number of is few.
Therefore, the number of times that exclusive OR is per-
formed in this step ST11 is very small as compared with
mxk.

In next step ST12, the matrix multiplier 4 multiplies the
calculation result Xd” in step ST11 by an inverse matrix Y~*
of the mxm matrix Y, which is calculated separately, to
acquire a vector Y~'Xd” according to the above equation (4).
The inverse matrix Y~' is calculated in advance from the
mxm matrix Y in the parity-check matrix H by the funda-
mental matrix operator 3. This inverse matrix Y~! is an mxm
matrix, and is not necessarily a sparse matrix. Therefore, in
this step ST12, it is necessary to calculate exclusive OR
about mxny/2 times.

In this Embodiment 1, the number of times that exclusive
OR is performed in step ST12 is dominant in the number of
times of exclusive OR and is about mxm/2. On the other
hand, because the number of times of exclusive OR is mxk/2
in the conventional method previously explained, the
amount of computations in this Embodiment 1 is smaller
than that in the conventional method at the time of m<k.
Most LDPC codes used in an actual error correction encod-
ing device satisfy m<k.
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6

As mentioned above, the error correction encoding device
1 in accordance with Embodiment 1 performs the sparse
matrix computing step of computing exclusive OR of a
submatrix, in the parity-check matrix, corresponding to the
information bit sequence, and the information bit sequence
on the basis of the position of 1 in the submatrix to calculate
a vector, and the matrix multiplying step of multiplying a
predetermined matrix in which a predetermined fundamen-
tal matrix is performed on the submatrix, in the parity-check
matrix, corresponding to the parity bit sequence (i.e., an
inverse matrix Y~! of the submatrix, in the parity-check
matrix, corresponding to the parity bit sequence) by the
vector acquired in the sparse matrix computing step. There-
fore, by performing the multiplication of the parity-check
matrix and the information bit sequence while dividing the
multiplication into two steps, the size of the inverse matrix
which is used for the multiplication and is not sparse can be
reduced to less than that in the conventional method. There-
fore, the amount of computations for the encoding of an
LDPC code can be reduced.

Because the computations in steps ST11 and ST12 of
Embodiment 1 are an addition of bits and a multiplication of
bits, respectively, a circuit that performs the addition by
using an exclusive OR (EXOR) gate, and a circuit that
performs the multiplication by using a logical product
(AND) gate can be constructed as an example. More spe-
cifically, in the error correction encoding device 1, the sparse
matrix computing unit 2 and the matrix multiplier 4 are
constructed of the circuits that consist of the exclusive OR
gate and the logical product gate, respectively.

In the case of this circuit structure, the number of times of
exclusive OR can be reduced by reducing the size of the
inverse matrix Y~' which is used for the multiplication and
is not sparse to less than that in the conventional method,
and, as a result, the circuit scale of the error correction
encoding device 1 can also be reduced.

Further, although the error correction encoding method in
the case in which a left portion of the vector of the codeword
¢ is defined as the information bit sequence d, and a right
portion of the vector is defined as the parity bit sequence p
as shown in the equation (3) is explained in Embodiment 1,
this embodiment is not limited to this example. For example,
an arbitrary portion of the codeword ¢ can be defined as the
parity bit sequence p, and, in this case, in order to implement
the structure in accordance with this Embodiment 1, there is
provided, as an example, a method of performing a process
of permuting the elements of the codeword c to place the
parity bit sequence p in a right portion of the vector, and
performing a process of also permuting the columns of the
parity-check matrix H according to the former process.
Because the essential characteristics of LDPC codes do not
vary even if the columns of the parity-check matrix H are
permuted, this method can be implemented.

In addition, although the error correction encoding device
1 in accordance with Embodiment 1 is constructed in such
away as to include the fundamental matrix operator 3 and
perform the fundamental matrix operation on the parity-
check matrix for LDPC codes, the error correction encoding
device can be constructed in such a way that a computation
result of performing the fundamental matrix operation on the
parity-check matrix is determined in advance, a storage,
such as a memory, is made to hold the computation result as
data, and the matrix multiplier 4 uses the data or the
computation result is incorporated into the matrix multiplier
4 because this fundamental matrix operation is not depen-
dent upon the information bit sequence and computations
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are carried out on the basis of only the parity-check matrix.
In this case, the fundamental matrix operator 3 can be
eliminated.

Embodiment 2

FIG. 4 is a block diagram showing the structure of an error
correction encoding device 1 in accordance with this
Embodiment 2. The error correction encoding device 1 in
accordance with this Embodiment 2 is provided with a
sparse matrix computing unit 2, a fundamental matrix opera-
tor 3, a matrix multiplier 4, and a parity bit calculator 5. In
FIG. 4, the same components as those shown in FIG. 1 or
like components are designated by the same reference
numerals, and the explanation of the components will be
omitted hereafter.

Although the error correction encoding method in the case
in which the above equation (4) is deformed into the above
equation (7) is explained in above-mentioned Embodiment
1, an error correction encoding method in the case in which
the above equation (4) is deformed into equation (8) shown
below will be explained in Embodiment 2.

XdT+¥pT=0
b7 T=_x4T

TpT=sxd” (8)

A matrix T, in the equation (8) is an mxm matrix, and is
a lower triangular matrix as shown in equation (9) shown
below. More specifically, when the element at the i-th row
and the j-th column of the matrix T, is expressed by T, (ij),
the matrix T, satisfies equation (10) and equation (11).

As long as the matrix T, is an mxm matrix which satisfies
the equations (9), (10), and (11), the matrix T, can be any
type of matrix.

)

T =

In the equation (9), the lower left half of the matrix T, is
Os or 1s.

T1(@)=1 (1si=m) 10

T,3/)=0 (1=i<jsm) (11

In the equation (8), a matrix S is an mxm matrix and
satisfies SY-T,. When a fundamental matrix operation is
performed on a predetermined matrix W=[YI|( is a unit
matrix) in such a way that the portion of Y turns into T, this
matrix W turns into [T,S] and the right portion turns into S.
More specifically, this matrix S is the one for converting the
mxm matrix Y into the lower triangular matrix T.

This matrix S is calculated in advance by the fundamental
matrix operator 3.

When the right-hand side (SXd7) in the lowermost row of
the equation (8) is expressed by a vector u, as shown in
equation (12), the first element p1 of a parity bit sequence p
can be calculated, as shown in equation (13). Further, the
elements other than pl can be calculated by using an
operation which is called backward substitution, as shown in
equation (14).
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SXdT =u” = (uy, Uy one u,,,)T (12)

pL=u 13

i (14
pi=ui+ Yy TipiaQ<i=m
=1

On the basis of the above explanation, this Embodiment
2 will be explained. FIG. 5 is a flow chart showing the
operation of the error correction encoding device 1 in
accordance with this Embodiment 2.

In step ST21, the sparse matrix computing unit 2 com-
putes exclusive OR of an information bit sequence d and an
mxk matrix X in a parity-check matrix H to acquire a vector
Xd%, like in the case of step ST11 of above-mentioned
Embodiment 1.

In step ST22, the matrix multiplier 4 multiplies the
calculation result Xd” in step ST21 by the matrix S calcu-
lated separately to acquire a vector u according to the above
equation (12). The matrix S is an mxm matrix which is not
sparse. Therefore, it is necessary to calculate exclusive OR
about mxm/2 times in this step ST22.

In step ST23, the parity bit calculator 6 calculates the
elements of the parity bit sequence p in turn from the vector
u acquired in step ST22 according to the above equations
(13) and (14). The amount of computations in this step ST23
is dependent upon the number of is included in the matrix
T,, and exclusive OR is performed about mxm/4 times.

According to the conventional method previously
explained, the information bit sequence d is multiplied by
the matrix Q1, and, after that, the parity bit sequence p is
determined through calculations, like in the case of the
equations (13) and (14). However, the matrix Q1 is an mxk
matrix which is not sparse. Therefore, it is necessary to
calculate exclusive OR about mxk/2 times, and the amount
of computations is large.

In contrast, in accordance with this Embodiment 2,
because the number of times of exclusive OR is, in step
ST21, very smaller than mxm, is about mxm/2 in step ST22,
and is about mxm/4 in step ST23, an LDPC code can be
encoded through calculation of exclusive OR about 3xmx
m/4 times in total. Therefore, when m<k, and the difference
between m and k is large, the amount of computations can
be reduced to less than about mxk/2 times in the conven-
tional method.

Further, about 3xmxm/4 which is the value of the amount
of computations estimated in this Embodiment 2 is greater
than about mxm/2 in above-mentioned Embodiment 1.
However, because the actual values of these amounts of
computations are dependent upon the matrices S and T, and
the inverse matrix Y~' in Embodiment 1, the concrete
amount of computations differs according to the parity-
check matrix H on which computations are performed.
Further, the amount of computations in this Embodiment 2
becomes less than that in above-mentioned Embodiment 1
dependently upon the parity-check matrix H. Anyway, the
amount of computations can be reduced to less than that in
the conventional method.

As mentioned above, the error correction encoding device
1 in accordance with Embodiment 2 performs the sparse
matrix computing step of computing exclusive OR of a
submatrix, in the parity-check matrix, corresponding to the
information bit sequence, and the information bit sequence
on the basis of the position of 1 in the submatrix to calculate
a vector, and the matrix multiplying step of multiplying a
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predetermined matrix in which a predetermined fundamen-
tal matrix is performed on the submatrix, in the parity-check
matrix, corresponding to the parity bit sequence (i.e., a
matrix S for converting the submatrix, in the parity-check
matrix, corresponding to the parity bit sequence into a lower
triangular matrix T,) by the vector acquired in the sparse
matrix computing step. Therefore, by performing the mul-
tiplication of the parity-check matrix and the information bit
sequence while dividing the multiplication into two steps,
the size of the matrix which is used for the multiplication
and is not sparse can be reduced to less than that in the
conventional method. Therefore, the amount of computa-
tions for the encoding of an LDPC code can be reduced.

Further, the error correction encoding device 1 in accor-
dance with Embodiment 2 performs the parity bit calculating
step of calculating the parity bit sequence by using both the
vector acquired in the matrix multiplying step, and the lower
triangular matrix. Therefore, the parity bit sequence can be
calculated with a small number of times of an addition of a
vector, and the amount of computations for the encoding of
an LDPC code can be reduced.

Although the matrix T, is a lower triangular matrix in
Embodiment 2, Embodiment 2 is not limited to this
example. In that case, although whether step ST23 can be
performed through an addition of a vector as shown in the
equation (14) turns into a problem from the viewpoint of the
amount of computations, the structure of the matrix T,
which makes it possible to perform step ST23 through an
addition of a vector is not limited to a lower triangular
matrix. If step ST23 can be configured of a small number of
times of an addition of a vector, an LDPC code can be
encoded with a small amount of computations.

As an example of this matrix T, there is a matrix in which
columns or rows of a lower triangular matrix are inter-
changed, or a matrix in which a part thereof is a lower
triangle. Further, as a matter of course, if the matrix T, is a
unit matrix, the matrix S is equivalent to an inverse matrix
Y~! of the mxm matrix Y, and, more specifically, the same
structure as that according to above-mentioned Embodiment
1 is provided.

Anyway, the fundamental matrix operator 3 can calculate
the matrix S from the matrix T, in the same way as that using
the calculating method of calculating the matrix S by
performing the fundamental matrix operation explained
above, so that step ST22 can be performed.

Further, because the computations in steps ST21 to ST23
of Embodiment 2 are an addition of bits and a multiplication
of bits, respectively, the sparse matrix computing unit 2, the
matrix multiplier 4, and the parity bit calculator 5 are
constructed of circuits that consist of an exclusive OR gate
and a logical product gate, respectively.

In the case of this circuit structure, the number of times of
exclusive OR can be reduced by reducing the size of the
matrix S which is used for the multiplication and is not
sparse to less than that in the conventional method, and, as
a result, the circuit scale of the error correction encoding
device 1 can also be reduced.

Further, although the error correction encoding method in
the case in which a left portion of the vector of the codeword
¢ is defined as the information bit sequence d, and a right
portion of the vector is defined as the parity bit sequence p
is explained even in Embodiment 2, like in above-mentioned
Embodiment 1, this embodiment is not limited to this
example. For example, an arbitrary portion of the codeword
¢ can be defined as the parity bit sequence p, and, in this
case, in order to implement the structure in accordance with
this Embodiment 2, there is provided, as an example, a
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method of performing a process of permuting the elements
of'the codeword ¢ to place the parity bit sequence p in a right
portion of the vector, and performing a process of also
permuting the columns of the parity-check matrix H accord-
ing to the former process. Because the essential character-
istics of LDPC codes do not vary even if the columns of the
parity-check matrix H are permuted, this method can be
implemented.

In addition, even in Embodiment 2, the error correction
encoding device can be constructed in such a way as that a
computation result of performing the fundamental matrix
operation on the parity-check matrix is determined in
advance, a storage, such as a memory, is made to hold the
computation result as data, and the matrix multiplier 4 uses
the data or the computation result is incorporated into the
matrix multiplier 4, thereby eliminating the fundamental
matrix operator 3, like in above-mentioned Embodiment 1.

Embodiment 3

In this Embodiment 3, QC-LDPC codes are handled. A
QC-LDPC code is a type of LDPC code, and is an LDPC
code in which a parity-check matrix is constructed of blocks
each of which is a circulant permutation matrix.

An example of a QC-LDPC code is shown in equation
(15). In the equation (15), the number n of columns of the
parity-check matrix H is set to n=Nq, and the number of
rows of the matrix is set to m=Mq. More specifically, the
parity-check matrix H has a structure of including M (X,
Y,;) with respect to a vertical direction and N (X, Y,) with
respect to a horizontal direction. Further, the following
relationship: K=N-M is established.

In addition, in the equation (15), the element X, at the i-th
row and the j-th column (1<i=M, 1=j<K) and the element Y,
at the i-th row and the j-th column (1=i=M, 1=j=M) are qxq
square matrices, respectively, and each of them is a circulant
permutation matrix or a Zero matrix. A circulant permutation
matrix is the one in which a unit matrix is cyclically shifted,
as shown in equation (16).

H = [XY] (15)
Xu X Xik Yu T Yim
X X Xok Y T2 Yom
X1 Xu2 oo Xux Y1 Ymz - Yuwm
0..010 ..0 (16)

0...001 ..0

00 01
1 00 00
00
0 100 ...0

Further, an example of a QC-LDPC code for use in this
Embodiment 3 is shown in FIG. 6.

In the parity-check matrix H for QC-LDPC codes, the first
column in blocks with M rows and M columns correspond-
ing to a parity bit sequence p is Z,.

Further, 1 which is shown as a submatrix in the parity-
check matrix H is a qxq unit matrix. Further, 0 is a qxq zero
matrix, and each of X, and Z; is a circulant permutation
matrix or a zero matrix.
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In addition, in this Embodiment 3, an information bit
sequence d is expressed as shown in equation (17), and the
parity bit sequence p is expressed as shown in equation (18).
In the notation of the equations (17) and (18), the informa-
tion bit sequence d and the parity bit sequence p for use in
above-mentioned Embodiments 1 and 2 are expressed for
each block of the parity-check matrix H. More specifically,
when the information bit sequence is divided into blocks
each having q pieces of information data, d,, is a vector
which consists of q pieces of information data corresponding
to the i-th block (1=i=<K). Similarly, when the parity bit
sequence is divided into blocks each having q parity bits, p,,,
is a vector which consists of q parity bits corresponding to
the i-th block (1=i=M).

Ay~ 1gr1dinigrz - - - dig) 17

18)

Next, an encoding method of encoding an LDPC code in
accordance with this Embodiment 3 will be explained by
using equations.

First, equations regarding the parity-check matrix H, the
information bit sequence d, and the parity bit sequence p are
determined on the basis of the above equation (3), like in the
case of above-mentioned Embodiments 1 and 2. At that
time, when the notation separately provided for each block
which is explained in the equations (15), (17), and (18) is
used as the parity-check matrix H, the information bit
sequence d, and the parity bit sequence p, the equation (3)
turns into equation (19) shown below.

pb,i:(p(i— Dg+ 1P G-1)g+2r + - = » D iq)

X11 X12 . X”( Zl I 00 ..0 db,l (19)
X21 X22 X2K ZZ 1 1 0 0 :
T - Zy 01 1 0 dy x
2 L Pb,1
N o N
Xui Xuz oo Xux Zy 00 0 0 I A ppy
0
0

When this equation (19) is divided into parts respectively
corresponding to the blocks and expanded, equation (20) is
acquired for the blocks in the first row, equation (21) is
acquired for the blocks in the second through (M-1)-th
rows, and equation (22) is acquired for the blocks in the
M-th row. Summing up the equations (20), (22), and (21)
with respect to j, equation (23) is acquired.

K (20)
Z Xude,; +lez7;,1 + PZ;,z =0

=)

K 21
injd;i +Zpl v Pl Pl =0 2<j=M-1)

=)

K (22)
Z Xudl; + Zu ply + phy =0

o1

Mo (23)
§ [injdb‘] Z pbl =0

—i\iT

=1
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Because only the parity bit block p,, is included in the
equation (23), equation (24) can be acquired by deforming
the equation (23) and p,, ; can be calculated.

In addition, summing up the equations (21) and (22) with
respect to some of j as appropriate, equation (25) with which
P, for each j (2<j=M-1) can be calculated is acquired, and
equation (26) can be acquired by deforming this equation
(25). p,,, in the right-hand side of the equation (26) is a value
calculated from the above equation (24). r shows targets (j,
j+1, ..., M) whose sum is calculated with . By using the
equation (26), the sum of vectors within sigma (within round
brackets) is determined with respect to the j-th through M-th
blocks.

@4

@5

Z[Zx‘,db‘] Z(zrpblnpbj—o C<i=M-1)

26)

M
'=Z[ZX"%‘] Z(erbl) 2=j=M-1

Further, equation (27) with which p, ,, can be calculated
is acquired from the equation (22), and, also in the equation
(27), Py ar can be calculated by using p,, ; calculated from the
equation (24), like in the equation (26).

K 27
P = Z X d; + Zu ph,
=

The parity bits for the LDPC code having the parity-check
matrix H can be calculated and the LDPC code can be
encoded in the above-mentioned way.

On the basis of the above explanation, this Embodiment
3 will be explained.

FIG. 7 is a block diagram showing the structure of an error
correction encoding device 1 in accordance with this
Embodiment 3. The error correction encoding device 1 in
accordance with this Embodiment 3 is provided with a
sparse matrix computing unit 2, a fundamental matrix opera-
tor 3, a (first) matrix multiplier 4, a parity bit calculator 5,
a vector element summer 6, and a second matrix multiplier
7. In FIG. 7, the same components as those shown in FIGS.
1 and 4 or like components are designated by the same
reference numerals, and the explanation of the components
will be omitted hereafter.

FIG. 8 is a flow chart showing the operation of the error
correction encoding device 1 in accordance with this
Embodiment 3.

In step ST31, the sparse matrix computing unit 2 com-
putes exclusive OR of the information bit sequence d,, ; and
the submatrix X, in the parity-check matrix H to acquire a
g-dimensional Vector for each j of X,d, ,, like in the case of
steps ST11 and ST21 of above-mentloned Embodiments 1
and 2, though the notation differs between step ST31 and
steps ST11 and ST21. This step ST31 corresponds to the
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calculation of the first terms of the above equations (20) to
(22). Because X, is a circulant permutation matrix and is a
sparse matrix, the amount of computations in this step ST31
is small.

In step ST32, the vector element summer 6 sums up the
g-dimensional vector which is the calculation result in step
ST31 with respect to r=1 to j (M-1) times. This step ST32
corresponds to the calculation of the first term of the above
equation (23).

In step ST33, the matrix multiplier 4 multiplies the
calculation result in step ST32 by the inverse matrix of a
matrix which is the sum of Z; with respect to j=1 to M, which
is calculated separately, to acquire a parity bit sequence p;, ;
according to the above equation (24). In this case, the
inverse matrix of the sum of Z, is calculated in advance by
the fundamental matrix operator 3. Although this inverse
matrix is not sparse, the inverse matrix is a qxq matrix and
its matrix size is small. Therefore, the amount of computa-
tions in this step ST33 is small.

In step ST34, the second matrix multiplier 7 multiplies the
parity bit sequence p,, ,, which is acquired in step ST33, by
each 7, and calculates the sum of vectors which are the
results of the multiplication. This step ST34 corresponds to
the calculation of the second term of the above equation
(25). Z, is sparse and the amount of computations is small.

In step ST35, the parity bit calculator 5 adds the calcu-
lation result in step ST32 and the calculation result in step
ST34 to calculate parity bit sequences p,, ; and p;, ,, accord-
ing to the above equations (26) and (27). Because this step
ST35 is the addition of two vectors, the amount of compu-
tations is small.

In this Embodiment 3, the amount of computations is
reduced by reducing the computations using the matrix
which is not sparse. Although the matrix which is not sparse
is the inverse matrix of the sum of Z; with respect to j in step
ST33, this inverse matrix is a qxq matrix and its size is
small. As a guideline, compared with m and k of the size of
a matrix which is not sparse and which is used in above-
mentioned Embodiments 1 and 2 and the conventional
method, q is typically as small as %5 to Yi0o. Therefore, the
amount of computations in step ST33 results from the
calculation of exclusive OR about qxq/2 times, and the
amount of computations can be reduced by order of the
square of g/m or g/k as compared with that in the conven-
tional method.

Although the step in which the amount of computations is
the largest, among the steps other than step ST33, is step
ST31, the matrix X used in step ST31 is sparse and the
computation done in step ST31 is the same as those in steps
ST11 and ST21 of above-mentioned Embodiments 1 and 2.
Therefore, if the same parity-check matrix is provided, the
encoding method according to this Embodiment 3 makes it
possible to reduce the amount of computations as compared
with the encoding method according to any one of above-
mentioned Embodiments 1 and 2.

As mentioned above, the error correction encoding device
1 in accordance with Embodiment 3 is constructed in such
a way as to perform the sparse matrix computing step of
computing exclusive OR of submatrices, in the parity-check
matrix, corresponding to the information bit sequence, and
the information bit sequence on the basis of the position of
1 in each of the submatrices to calculate a plurality of
vectors; the vector element summing step of acquiring a
vector which is the sum of the plurality of vectors acquired
in the sparse matrix computing step; the (first) matrix
multiplying step of multiplying the inverse matrix of a
matrix which is acquired by summing up a part of subma-
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trices, in the parity-check matrix, corresponding to the parity
bit sequence and the sum vector acquired in the vector
element summing step to calculate a part of the parity bit
sequence; the second matrix multiplying step of multiplying
the part of the submatrices which is the target for the
summation in the (first) matrix multiplying step and the part
of the parity bit sequence acquired in the (first) matrix
multiplying step to acquire a vector which is a multiplication
result; and the parity bit calculating step of calculating a
remaining part of the parity bit sequence on the basis of the
plurality of vectors acquired in the sparse matrix computing
step and the vector which is the multiplication result
acquired in the second matrix multiplying step. Therefore, in
the encoding of a QC-LDPC code, many of the computa-
tions can be performed by using sparse matrices, and the
amount of computations can be reduced. Further, the size of
the inverse matrix which is used for the multiplication and
which is not sparse can be reduced to less than that in the
conventional method, like in the case of above-mentioned
Embodiments 1 and 2, and this reduction can also result in
a reduction in the amount of computations.

Further, because the computations in steps ST31 to ST35
of Embodiment 3 are an addition of bits and a multiplication
of bits, respectively, the sparse matrix computing unit 2, the
matrix multiplier 4, the second matrix multiplier 7, and the
parity bit calculator 5 are constructed of circuits that consist
of an exclusive OR gate and a logical product gate, respec-
tively.

In the case of this circuit structure, the number of times of
exclusive OR can be reduced by reducing the size of the
inverse matrix which is used for the multiplication and is not
sparse to less than that in the conventional method, and, as
a result, the circuit scale of the error correction encoding
device 1 can also be reduced.

Further, although the error correction encoding method in
the case in which a left portion of the vector of the codeword
¢ is defined as the information bit sequence d, and a right
portion of the vector is defined as the parity bit sequence p
is explained even in Embodiment 3, like in above-mentioned
Embodiments 1 and 2, this embodiment is not limited to this
example. For example, an arbitrary portion of the codeword
¢ can be defined as the parity bit sequence p, and, in this
case, in order to implement the structure in accordance with
this Embodiment 3, there is provided, as an example, an
method of performing a process of permuting the elements
of'the codeword ¢ to place the parity bit sequence p in a right
portion of the vector, and performing a process of also
permuting the columns of the parity-check matrix H accord-
ing to the former process. Because the essential character-
istics of LDPC codes do not vary even if the columns of the
parity-check matrix H are permuted, this method can be
implemented.

In addition, even in Embodiment 3, the error correction
encoding device can be constructed in such a way as that a
computation result of performing a fundamental matrix
operation on the parity-check matrix is determined in
advance, a storage, such as a memory, is made to hold the
computation result as data, and the matrix multiplier 4 uses
the data or the computation result is incorporated into the
matrix multiplier 4, thereby eliminating the fundamental
matrix operator 3, like in above-mentioned Embodiments 1
and 2.

Embodiment 4

FIG. 9 is a block diagram showing the structure of an error
correction encoding device 1 in accordance with Embodi-
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ment 4 of the present invention. The error correction encod-
ing device 1 in accordance with this Embodiment 4 is
provided with a sparse matrix computing unit 2, a funda-
mental matrix operator 3, a matrix multiplier 4, a parity bit
calculator 5, a vector element summer 6, a second matrix
multiplier 7, cyclic shifters 8 and 9, and an inverse cyclic
shifter 10. In FIG. 9, the same components as those shown
in FIG. 7 or like components are designated by the same
reference numerals, and the explanation of the components
will be omitted hereafter.

In this Embodiment 4, an arithmetic expression for a
parity bit sequence p explained in above-mentioned
Embodiment 3 will be explained by using another represen-
tation based on a fundamental matrix operation. As already
explained, an example of a parity-check matrix H for
QC-LDPC codes to which above-mentioned Embodiment 3
is applied is as shown in FIG. 6. The parity-check matrix H
shown in FIG. 6 has a simple structure because of the
predetermined fundamental matrix operation which the fun-
damental matrix operator 3 performs. FIG. 10 is a view
explaining the fundamental matrix operation. When addi-
tions (1) to (M-1) are carried out on the parity-check matrix
H in turn on a per block basis, as shown in a portion above
a central arrow, a matrix shown in a portion below the arrow
is acquired. It can be seen that through this fundamental
matrix operation, many unit matrices Is can be erased, and
the parity-check matrix has a structure of a lower triangular
matrix, except for the sum of Z, appearing in the first row
with respect to r=1 to M. This sum of Z, corresponds to a
qxq matrix which is used as the inverse matrix in step ST33
of FIG. 8 and in the above equation (24), and which is the
sum of Z,.

On the basis on the above explanation, it is clear that the
structure of the parity-check matrix H is not limited to the
structure shown in FIG. 6.

Therefore, in this Embodiment 4, the parity-check matrix
H shown in FIG. 11 is used as an example. The parity-check
matrix H shown in FIG. 11 has a structure in which some or
all of the unit matrices I in the parity-check matrix H shown
in FIG. 6 are replaced by circulant permutation matrices A,.
Further, some or all of the circulant permutation matrices A,
are replaced by zero matrices.

More specifically, in each addition (j) (1=j=M-1) shown
in FIG. 10, instead of the fundamental matrix operator 3
simply performing the addition on a per block basis, in the
case of FIG. 11, the cyclic shifter 8 performs cyclic shift on
a block X,;, Z, or A; which is a lower one of the two blocks
to be added (e.g., a block in the M-th row which is the
lowermost row of the parity-check matrix H and a block in
the (M-1)-th row which is higher than the M-th row by one
row) first, and the fundamental matrix operator 3 then adds
the lower block on which the cyclic shift is performed to the
upper block. By repeating this process, a matrix which is the
same as the matrix shown in the portion below the arrow in
FIG. 10 is acquired.

The matrix acquired in this case has a structure in which
cyclic shift is performed on some submatrices X;; and Z; in
the matrix shown in the portion below the arrow n FIG. 10.
Is and Os shown in FIG. 10 still remain the same as those in
FIG. 10.

After summing up (j) the rows of the parity-check matrix
H in which cyclic shift is performed on X, , Z, and A, by the
cyclic shifter 8, the fundamental matrix operator 3 calculates
the inverse matrix of the sum of Z, appearing in the first row
with respect to r=1 to M and outputs this inverse matrix to
the matrix multiplier 4.
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Although a matrix which is the same as the matrix shown
in the portion below the arrow in FIG. 10 can be acquired by
performing cyclic shift on the submatrices in the parity-
check matrix H and then performing the fundamental matrix
operation, as mentioned above, it is necessary to, according
to the cyclic shift at this time, also perform cyclic shift on
an information bit sequence d and a parity bit sequence p.

Concretely, the cyclic shifter 9 performs cyclic shift on
each partial vector d,, of the information bit sequence d
before performing step ST31 of FIG. 8. The inverse cyclic
shifter 10 on another side performs cyclic shift on each
partial vector p,,, of the parity bit sequence p after perform-
ing step ST35 of FIG. 8. The cyclic shift which the cyclic
shifter 9 and the inverse cyclic shifter 10 perform corre-
sponds to the cyclic shift on the blocks X, Z;, and A; which
the cyclic shifter 8 performs, and the cyclic shifter 9
performs cyclic shift which is the same as that on each X,
in the parity-check matrix H which the cyclic shifter 8
performs on the information bit sequence d,, to shift this
information bit sequence. Further, the inverse cyclic shifter
10 performs shift inverse to the cyclic shift which the cyclic
shifter 8 performs on each Z; and each A, in the parity-check
matrix H on the parity bit sequence p,,, to return this parity
bit sequence to its original state.

The error correction encoding device 1 in accordance with
this Embodiment 4 can also implement an encoding method
which is the same as that shown in FIG. 8 by performing the
above-mentioned processing.

As mentioned above, the error correction encoding device
1 in accordance with Embodiment 4 uses, as the parity-
check matrix, a matrix which consists of submatrices X,; (i
shows a row and j shows a column) corresponding to the
information bit sequence, submatrices Z, in the first column
of the submatrix corresponding to the parity bit sequence,
and submatrices in the second and subsequent columns, and
the submatrices in the second and subsequent columns have
a structure of including circulant permutation matrices A, as
diagonal elements and also including unit matrices respec-
tively located under the above-mentioned circulant permu-
tation matrices A , and in which some of the submatrices X,
and Z; and the circulant permutation matrices A, are cycli-
cally shifted by the cyclic shifter 8. Therefore, an LDPC
code can be encoded by using the encoding method shown
in FIG. 8 by performing cyclic shift on some submatrices in
the parity-check matrix H having the structure shown in
FIG. 11. Because the number of Is included in the matrix
does not change even if cyclic shift is performed on some
submatrices, the amount of computations becomes the same
as that in the case of the parity-check matrix H having a
structure shown in FIG. 6 in accordance with above-men-
tioned Embodiment 3. Therefore, as compared with those in
the conventional method and the encoding method in accor-
dance with above-mentioned Embodiments 1 and 2, the
amount of computations can be reduced.

In addition, the parity-check matrix H applicable to this
Embodiment 4 is not limited to the example shown in FIG.
11. For example, as shown in FIG. 12, some or all of the unit
matrices | in the parity-check matrix H shown in FIG. 11 can
be replaced by circulant permutation matrices B,. Further,
some or all of the circulant permutation matrices B, can be
replaced by zero matrices. This is because even if the rows
of the parity-check matrix H are interchanged, the essential
structure of the parity-check matrix and LDPC codes does
not change. As a matter of course, even if cyclic shift is
performed on rows on a per block basis, the essential
structure does not change. When each circulant permutation
matrix B; is replaced by a unit matrix I on a per block basis
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in the rows of the parity-check matrix H shown in FIG. 12,
the parity-check matrix H has the same structure as that
shown in FIG. 11.

Also in the case of FIG. 12, the cyclic shifter 8 performs
cyclic shift on a block X, Z,, A, or B, which is a lower one
of the two blocks to be added first, and the fundamental
matrix operator 3 then adds the lower block on which the
cyclic shift is performed to the upper block. By repeating
this process, a matrix which is the same as the matrix shown
in the portion below the arrow in FIG. 10 is acquired.

The matrix acquired in this case has a structure in which
cyclic shift is performed on some submatrices X,;, Z;, and 1
replaced by A, in the matrix shown in the portion below the
arrow in FIG. 10. After summing up (j) the rows of the
parity-check matrix H in which cyclic shift is performed on
X, Z; A, and B, by the cyclic shifter 8, the fundamental
matrix operator 3 calculates the inverse matrix of the sum of
Z, appearing in the first row with respect to r=1 to M and
outputs this inverse matrix to the matrix multiplier 4.

Also in this case, the cyclic shifter 9 performs cyclic shift
on each partial vector d, , of the information bit sequence d,
like the cyclic shifter 8, and the inverse cyclic shifter 10
performs cyclic shift inverse to that by the cyclic shifter 8 on
each partial vector p,,, of the parity bit sequence p.

The error correction encoding device can also implement
an encoding method which is the same as that shown in FIG.
8 by performing the above-mentioned processing.

As mentioned above, the error correction encoding device
1 in accordance with Embodiment 4 uses, as the parity-
check matrix, a matrix which consists of submatrices X, (i
shows a row and j shows a column) corresponding to the
information bit sequence, submatrices Z; in the first column
of the submatrix corresponding to the parity bit sequence,
and submatrices in the second and subsequent columns, and
the submatrices in the second and subsequent columns have
a structure of including circulant permutation matrices A, as
diagonal elements and also including circulant permutation
matrices B; respectively located under the above-mentioned
circulant permutation matrices A, and in which some of the
submatrices X, and 7, and the circulant permutation matri-
ces A; and B; are cyclically shifted by the cyclic shifter 8.
Therefore, an LDPC code can be encoded by using the
encoding method shown in FIG. 8 by performing cyclic shift
on some submatrices in the parity-check matrix H having the
structure shown in FIG. 12. Because the number of 1s
included in the matrix does not change even if cyclic shift is
performed on some submatrices, the amount of computa-
tions becomes the same as that in the case of the parity-
check matrix H having a structure shown in FIG. 6 in
accordance with above-mentioned Embodiment 3. There-
fore, as compared with those in the conventional method and
the encoding method in accordance with above-mentioned
Embodiments 1 and 2, the amount of computations can be
reduced.

Further, because even in Embodiment 4 the computations
in steps ST31 to ST35 shown in FIG. 8 are an addition of bits
and a multiplication of bits, respectively, like in above-
mentioned Embodiment 3, the sparse matrix computing unit
2, the matrix multiplier 4, the second matrix multiplier 7,
and the parity bit calculator 5 are constructed of circuits that
consist of an exclusive OR gate and a logical product gate,
respectively. In the case of this circuit structure, the number
of'times of exclusive OR can be reduced by reducing the size
of the inverse matrix which is used for the multiplication and
is not sparse to less than that in the conventional method,
and, as a result, the circuit scale of the error correction
encoding device 1 can also be reduced.
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Further, although the error correction encoding method in
the case in which a left portion of the vector of the codeword
¢ is defined as the information bit sequence d, and a right
portion of the vector is defined as the parity bit sequence p
is explained even in Embodiment 4, like in above-mentioned
Embodiments 1 to 3, this embodiment is not limited to this
example. For example, an arbitrary portion of the codeword
¢ can be defined as the parity bit sequence p, and, in this
case, in order to implement the structure in accordance with
this Embodiment 4, there is provided, as an example, a
method of performing a process of permuting the elements
of'the codeword ¢ on a per block basis to place the parity bit
sequence p in a right portion of the vector, and performing
a process of also permuting the block columns of the
parity-check matrix H according to the former process. If the
parity-check matrix H after permutation has a structure as
illustrated in FIGS. 11 and 12, Embodiment 4 can be
implemented. More specifically, by permuting the rows and
the columns on a per block basis, it can be said that
Embodiment 4 can be implemented if the parity-check
matrix H has a structure which can implement Embodiment
4 explained above.

In addition, even in Embodiment 4, the error correction
encoding device can be constructed in such a way as that a
computation result of performing the fundamental matrix
operation on the parity-check matrix is determined in
advance, a storage, such as a memory, is made to hold the
computation result as data, and the matrix multiplier 4 uses
the data or the computation result is incorporated into the
matrix multiplier 4, thereby eliminating the fundamental
matrix operator 3, like in above-mentioned Embodiments 1
to 3.

Further, because the cyclic shift is a process of changing
the order of data in Embodiment 4, a computation result of
performing cyclic shift or the fundamental matrix operation
on the parity-check matrix can be determined in advance
when rules governing the cyclic shift (output results of the
cyclic shifter 8) has become known in advance, and, in that
case, the cyclic shifter 8 and the fundamental matrix opera-
tor 3 can be omitted.

In addition, when the rules governing the cyclic shift has
become known in advance, the error correction encoding
device can be implemented without having to provide com-
puting elements or the like which construct the cyclic shifter
9 and the inverse cyclic shifter 10. Because the order of data
is determined from a method of connecting wires particu-
larly in a case in which the error correction encoding device
is implemented by circuits, the error correction encoding
device can be implemented without having to provide com-
puting elements, and the functions of the cyclic shifter 9 and
the inverse cyclic shifter 10 can be implemented without
increasing the circuit scale.

While the invention has been described in its preferred
embodiments, it is to be understood that an arbitrary com-
bination of two or more of the above-mentioned embodi-
ments can be made, various changes can be made in an
arbitrary component in accordance with any one of the
above-mentioned embodiments, and an arbitrary component
in accordance with any one of the above-mentioned embodi-
ments can be omitted within the scope of the invention.

INDUSTRIAL APPLICABILITY

As mentioned above, the error correction encoding device
in accordance with the present invention is suitable for use
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in a transmitter of a communication system or the like which
encodes information data according to LDPC codes.

EXPLANATIONS OF REFERENCE NUMERALS

1 error correction encoding device, 2 sparse matrix com-
puting unit, 3 fundamental matrix operator, 4 (first) matrix
multiplier, 5 parity bit calculator, 6 vector element summer,
7 second matrix multiplier, 8 and 9 cyclic shifter, 10 inverse
cyclic shifter.

The invention claimed is:

1. An error correction encoding method of calculating a
parity bit sequence from an information bit sequence by
using a sparse parity-check matrix for QC (Quasi-Cyclic)-
LDPC (Low-Density Parity-Check) codes, and encoding the
parity bit sequence, said error correction method compris-
ing:

a sparse matrix computing step of computing exclusive
OR of submatrices, in said sparse parity-check matrix,
corresponding to said information bit sequence on a
basis of a position of 1 in each of said submatrices to
calculate a plurality of vectors;

a vector element summing step of acquiring a vector
which is a sum of said plurality of vectors acquired in
said sparse matrix computing step;

a first matrix multiplying step of multiplying an inverse
matrix of a matrix which is acquired by summing up a
part of submatrices, in said parity-check matrix, corre-
sponding to said parity bit sequence and said sum
vector acquired in said vector element summing step to
calculate a part of said parity bit sequence;

a second matrix multiplying step of multiplying said part
of the submatrices which is the target for the summa-
tion in said first matrix multiplying step and the part of
said parity bit sequence acquired in said first matrix
multiplying step to acquire a vector which is a multi-
plication result; and

a parity bit calculating step of calculating a remaining part
of said parity bit sequence on a basis of said plurality
of vectors acquired in said sparse matrix computing
step and said vector which is the multiplication result
acquired in said second matrix multiplying step.

2. The error correction encoding method according to
claim 1, wherein said parity-check matrix consists of sub-
matrices X, (i shows a row and j shows a column) corre-
sponding to said information bit sequence, submatrices Z, in
a first column of a submatrix corresponding to said parity bit
sequence, and submatrices in second and subsequent col-
umns of the submatrix corresponding to said parity bit
sequence, said submatrices in the second and subsequent
columns have a structure of including circulant permutation
matrices A; as diagonal elements and also including unit
matrices respectively located under said circulant permuta-
tion matrices A, and some of said submatrices X,; and Z, and
said circulant permutation matrices A, are cyclically shifted.

3. The error correction encoding method according to
claim 1, wherein said parity-check matrix consists of sub-
matrices X, (i shows a row and j shows a column) corre-
sponding to said information bit sequence, submatrices Z; in
a first column of a submatrix corresponding to said parity bit
sequence, and submatrices in second and subsequent col-
umns of the submatrix corresponding to said parity bit
sequence, said submatrices in the second and subsequent
columns have a structure of including circulant permutation
matrices A, as diagonal elements and also including circulant
permutation matrices B, respectively located under said
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circulant permutation matrices A;, and some of said subma-
trices X,; and Z, and said circulant permutation matrices A,
and B; are cyclically shifted.

4. An error correction encoding method of calculating a
parity bit sequence from an information bit sequence by
using a sparse parity-check matrix for QC (Quasi-Cyclic)-
LDPC (Low-Density Parity-Check) codes, and encoding the
parity bit sequence, in which

said information bit sequence d, , is a vector consisting of

q elements corresponding an i-th block (1=i<K) when
elements thereof are divided into blocks each having q
elements,

said parity bit sequence p,, is a vector consisting of q

elements corresponding an i-th block (1=i=M) when
elements thereof are divided into blocks each having q
elements,

said parity-check matrix with M rows and N columns

consists of submatrices X, with M rows and K columns
(K=N-M) corresponding to said information bit
sequence, submatrices Z, in a first column of M rows
and M columns corresponding to said parity bit
sequence, and submatrices including unit matrices as
diagonal elements of two rows, and

each element of said parity bit sequence is calculated

according to three equations shown below:

M
=1

A

K M
phi= Z[Z X;,de,;] + > Zphy @=j=M -1
i=1

M
=] =

K
Phu = Z X dl; + Zu ph,
=

where T is a transposed matrix.

5. The error correction encoding method according to
claim 4, wherein said parity-check matrix consists of the
submatrices X,; (i shows a row and j shows a column)
corresponding to said information bit sequence, the subma-
trices Z; in the first column of the submatrix corresponding
to said parity bit sequence, and the submatrices in the second
and subsequent columns of the submatrix corresponding to
said parity bit sequence, said submatrices in the second and
subsequent columns have a structure of including circulant
permutation matrices A; as diagonal elements and also
including unit matrices respectively located under said cir-
culant permutation matrices A;, and some of said submatri-
ces X, and 7, and said circulant permutation matrices A, are
cyclically shifted.

6. The error correction encoding method according to
claim 4, wherein said parity-check matrix consists of the
submatrices X,; (i shows a row and j shows a column)
corresponding to said information bit sequence, the subma-
trices Z; in the first column of the submatrix corresponding
to said parity bit sequence, and the submatrices in the second
and subsequent columns of the submatrix corresponding to
said parity bit sequence, said submatrices in the second and
subsequent columns have a structure of including circulant
permutation matrices A, as diagonal elements and also
including circulant permutation matrices B, respectively
located under said circulant permutation matrices A, and
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some of said submatrices X;; and Z; and said circulant
permutation matrices A; and B, are cyclically shifted.

7. An error correction encoding device that calculates a
parity bit sequence from an information bit sequence by
using a sparse parity-check matrix for QC (Quasi-Cyclic)- 5
LDPC (Low-Density Parity-Check) codes, and encodes the
parity bit sequence, said device comprising:

a sparse matrix computing unit that computes exclusive
OR of submatrices, in said sparse parity-check matrix,
corresponding to said information bit sequence, and 10
said information bit sequence on a basis of a position of
1 in each of said submatrices to calculate a plurality of
vectors;

a vector element summer that acquires a vector which is
a sum of said plurality of vectors acquired by said 15
sparse matrix computing unit;

a first matrix multiplier that multiplies an inverse matrix
of'a matrix which is acquired by summing up a part of
submatrices, in said parity-check matrix, corresponding
to said parity bit sequence and said sum vector acquired 20
by said vector element summer to calculate a part of
said parity bit sequence;

a second matrix multiplier that multiplies said part of the
submatrices which is the target for the summation by
said first matrix multiplier and the part of said parity bit 25
sequence acquired by said first matrix multiplier to
acquire a vector which is a multiplication result; and

a parity bit calculator that calculates a remaining part of
said parity bit sequence on a basis of said plurality of
vectors acquired by said sparse matrix computing unit 30
and said vector which is the multiplication result
acquired by said second matrix multiplier.
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